• Perfil

Blog de José Félix Rodríguez Antón

~ conocimiento de las cosas

Blog de José Félix Rodríguez Antón

Archivos de etiqueta: Nobel Prize

Niels Bohr: padre de la química cuántica

10 sábado Mar 2018

Posted by José Félix Rodríguez Antón in CIENCIA, Química

≈ Deja un comentario

Etiquetas

cuantización, Einstein, modelo atómico, Niels Bohr, Nobel Prize, onda partícula, química cuántica, tabla periódica

P19_Niels-Bohr-1950-630x390

El cráter lunar Bohr lleva este nombre en su memoria. El elemento químico bohrio se denominó así en su honor, al igual que el asteroide (3948) Bohr descubierto por Poul Jensen.

El “modelo cuántico de Bohr”, fue un enorme avance en la época, porqué demostró que la cuántica podía explicar fenómenos importantes como la composición de la materia en su nivel elemental y la reactividad química. Posteriormente este modelo permitió dar una explicación a los espectros de emisión de rayos X, a la absorción – emisión de luz por los átomos y a la variación de las propiedades químicas de los elementos.

La mecánica clásica, newtoniana, presentaba una descripción objetiva de la realidad, una separación entre objeto y sujeto, en la cuántica la separación se produce de una manera arbitraria, con la introducción del “cuanto de acción” de Planck en los procesos atómicos, se pone en cuestión la concepción determinista de la naturaleza.

El nombre de Bohr va unido a la interpretación de Copenhague, se entiende la interpretación de la mecánica cuántica en la que un sistema puede describirse mediante una “función de onda”. Una posición definida o “espín de la partícula” no se produce hasta que es observada.

Niels Bohr, nace en 1885 en Copenhague, realizó un curso de filosofía en 1903 con el profesor Harald Hoffding, estudió física con Christian Christiansen, se licenció en 1909; tras doctorarse en la Universidad de Copenhague en 1911 pasó un año en Inglaterra de postdoctorado en Cambridge y Manchester teniendo como maestro a Ernest Rutherford. En 1916, Niels Bohr comenzó a ejercer como profesor de física teórica en la Universidad de Copenhague, consiguiendo los fondos para crear el “Instituto Nórdico de Física Teórica”, que dirigió desde 1920 hasta su fallecimiento. En 1943, con la Segunda Guerra Mundial, Bohr escapó a Suecia, viajando posteriormente a Londres. Una vez a salvo, trabajó para el Proyecto Manhattan de los Álamos, Nuevo México (EE.UU.). Después de la guerra, retornó a Copenhague, donde residió hasta su fallecimiento en 1962.

A través de Hoffding, llegó a la filosofía existencialista de Kierkegaard. Filosofía de continuidad en el tiempo en que la discontinuidad se había convertido en una realidad Max Planck, descubrió el “cuanto de acción” en 1900. Hoffding creía que se daban “saltos” en la naturaleza inanimada, así Bohr renunció a las explicaciones causales y defendió cambios espontáneos antes de familiarizarse con el existencialismo de Kierkegaard. A lo largo de la carrera de Bohr se reconcilia la teoría clásica y la teoría cuántica en algo racional.

En la física clásica existe una continuidad hay coordenadas de:
• Espacio
• Tiempo
• Energía
• Momento

En la física cuántica se aceptan como intrínsecas nociones de:
• Indeterminación
• Descripción estadística
• Distribución probabilista

Sus trabajos adquieren una doble importancia en la historia de la física del siglo XX:
a) Primer esbozo de una teoría coherente sobre la constitución del átomo.
b) Se convertía en un avance decisivo de la concepción cuántica al establecer un grado de generalidad.

 

 

“El modelo atómico de Bohr” se basa en tres postulados:

1. Los electrones describen órbitas circulares en torno al núcleo del átomo sin radiar energía.
2. No todas las órbitas para el electrón están permitidas, solo se pueden encontrar órbitas cuyo radio cumpla que el “momento angular”, L, del electrón sea un múltiplo entero.
3. El electrón solo emite o absorbe energía en los saltos de una órbita permitida a otra. En dicho cambio emite o absorbe un fotón cuya energía es la diferencia entre ambos niveles.

El primer modelo atómico de Bohr, se presentó en 1913, en “On the constitution of atoms and molecules”, aportaba la base teórica para el modelo atómico construido por Rutherford en 1911. Resolvía la constitución del átomo a través de los conceptos cuánticos: los electrones orbitan alrededor de un núcleo central y alcanzan estabilidad: cuantificación del momento angular. El tránsito de los electrones de una órbita a otra viene acompañado de la absorción o emisión de energía en forma de luz, explicando el espectro de emisión del hidrógeno:

 

salto de energia

Un solo electrón de masa “m” viajaba en órbita circular de radio “r”, a una velocidad “v”, en torno a un núcleo dotado de carga positiva. El “momento angular” del electrón sería entonces mxvxr, Bohr propuso que los electrones pudieran ocupar solo órbitas en las que este momento angular presentara ciertos valores fijos: h/2pi, 2h/2pi/, 3h/3pi…h/npi donde “h” es la constante de Planck. Se cuantifica el momento algunar, presenta solo determinados valores, cada uno de los cuales es múltiplo de h/2pi. Bohr suponía que, cuando el átomo emitía o absorbía radiación de frecuencia, el electrón saltaba de una órbita a la siguiente; la energía emitida o absorbida en cada salto era igual a hxv.

Bohr estableció la alianza entre la física clásica y la cuántica, con sus dos principios:
• “Principio de correspondencia” en la obra “On the quantum theory o line-spectra. Part I”, publicado en 1918.
• “Principio de complementariedad” en la obra “Atomic theory and the description o nature”, propone la complementariedad de las representaciones de los sucesos, la teoría cuántica es una generalización racional de la mecánica clásica.

En 1922 Bohr actualizó las tablas periódicas de los elementos propuestas por Bayley y Thomsen en las que se había iniciado una separación entre los grupos principales y secundarios, Bohr alargó el sistema de Thomsen introduciendo un grupo de elementos (periodo 7º) que comenzaba con el Ac como homólogo del La y donde se iniciaba el llenado del orbital 5f. Dejó también 14 espacios para colocar las tierras raras que comenzaban después del U.

 

tabla periodica ok

Propuso un modelo atómico según el cual los electrones se agrupan alrededor del núcleo formando capas concéntricas de modo que cumplen unas condiciones determinadas. Aquellos elementos que pertenecen a un mismo grupo habrían de tener una configuración electrónica similar. Los átomos no son indivisibles sino que están formados por partículas subatómicas con cargas eléctricas y masas características, los átomos tenían concentraciones de masa y espacios vacíos, así Rutherford y Bohr, propusieron los “modelos planetarios” o “nucleares para los átomos”.

Los átomos tienen una parte central llamada “núcleo” en la que reside la casi totalidad de la masa del átomo, el núcleo está cargado positivamente: los protones están en el núcleo del átomo. Los electrones giran alrededor del núcleo. Cada capa tiene una energía distinta, a las capas de Bohr se les llama también “niveles de energía”. Los electrones no pueden tomar cualquier valor de energía se les conoce como “cuantización de la energía”: “el modelo atómico de Bohr” es por tanto un modelo “cuántico”. El estado de menor energía de un átomo sería aquel en el que el valor de las energías de los electrones sumadas nos diera el valor más negativo.

 

 

atomo

Las capas de Bohr se denominan alfabéticamente a partir de la letra K y, de acuerdo con la teoría, no pueden contener cualquier número de electrones:
• CAPA K: 2 electrones
• CAPA L: 8 electrones
• CAPA M: 18 electrones
• CAPA N: 32 electrones

Los átomos son eléctricamente neutros, el número de protones debe ser igual al número de electrones, la distribución electrónica para algunos átomos de acuerdo con el modelo de Bohr nos genera la forma más usada y más conocida de la tabla periódica, la llamada “Tabla periódica Larga” o “Tabla de Bohr” o “Tabla de Bohr y Sommerfeld”.

En 1922 recibió el Premio Nobel de Física por sus trabajos sobre la estructura atómica y la radiación. Concluye que la luz presentaba una dualidad “onda-partícula” mostrando propiedades mutuamente excluyentes según el caso. Su hijo Aage Niels Bohr, obtuvo también el premio Nobel de Física en 1975.

En 1933 Bohr propuso la hipótesis de la “gota liquida”, teoría que permitía explicar las desintegraciones nucleares (entre ellas la fisión del isótopo uranio 235).

Los nuevos conceptos “cuánticos” defendidos por Bohr no eran compartidos por el racionalismo de Einstein, era reacio a interpretaciones de física filosóficas, de donde surgía la nueva mecánica, la materia ordenada surgía del desorden regido por el azar, el comportamiento de la materia depende del hecho de observarla y el concepto del cuanto:
“Dios no juega a los dados con el Universo”, “la Luna aún sigue ahí, aunque no la mire”, “esta espeluznante acción a distancia”.
Einstein decía que el universo material era “local y real”, donde lo local indicaba que nada puede superar la velocidad de la luz. Bohr aludía a la “función de onda” de las partículas subatómicas y al estado de “superposición” que pueden presentar estas. Esto podía ser producto de una de dos alternativas: a) las partículas subatómicas en dos puntos alejados del universo se envían información sobre sus estados a velocidades superiores a la de la luz con lo cual la superposición se explicaría por la presencia de más de un electrón que se comunican en distintos puntos del universo o b) las partículas subatómicas pueden existir en dos o más estados a la vez.

Uno de los más famosos estudiantes de Bohr fue Werner Heisenberg, el líder del proyecto alemán de bomba atómica.
Bohr después de la guerra, se convirtió en un defensor el desarme nuclear. Fue el primero en recibir, en 1958, el premio Átomos para la Paz.
Tiene varios libros interesantes: “Teoría de los espectros y constitución atómica”, “El mecanismo de la fisión nuclear”, “Física atómica y conocimiento humano”.

 

Bibliografía:

• NobelPrize.org Niels Bohr
https://www.nobelprize.org/nobel_prizes/physics/laureates/1922/

 

• Roberto Angeloni, Leo S. Olschki, “Unity and continuity in Niels Bohr´s philosophy of physics”, Bibliotea di Nuncius, Florencia, 2013.

 

• Leidys Laura Pérez González, Noel David Pérez Acosta, “El modelo atómico de Bohr y el desarrollo de la nanociencia en el cuidado de la salud”, Universidad Central “Marta Abreu” de las Villas, Santa Clara, Villa Clara, Cuba; Policlínico “Idalberto Revuelta”, Sagua la Grande, Villa Clara. 2016.

 

• Wikipedia

 

Links relacionados:

 

• Universidad Rice, Relativistic Heavy Ion Physics Group Prof. Wei Li
http://wl33.web.rice.edu/index.html

 

• Universidad Rice; Who knew excited atoms can make like Mars?
http://explore.rice.edu/WhoKnew_Template.aspx?id=5439

 

• Universidad Rice: Physicists create millimeter-sized ‘Bohr atom’
http://news.rice.edu/2008/06/26/physicists-create-millimeter-sized-bohr-atom/

 

• Universidad de Copenhague, Instituto Niels Bohr
http://www.nbi.ku.dk/english/

 

 

Nobel Prize & Autophagy: Yoshinori Ohsumi

12 miércoles Oct 2016

Posted by José Félix Rodríguez Antón in Célula, CIENCIA

≈ Deja un comentario

Etiquetas

autophagosomes, Autophagy, lysosome, Nobel Prize, proteasome, Yoshinori Ohsumi

autophagy

Autophagy has been known for over 50 years bus its fundamental importance in physiology and medicine was only recognized after Yoshinori Ohsumi´s paradigm-shifting research in the 1990´s. For his discoveries, he is awarded this year´s Nobel Prize in physiology or medicine.

For pioneering the molecular elucidation of autophagy, an essential intracelular, degradation system and when disordered, is linked to many diseases including neurodegeneration, cancer, and infection.

Dr. Yoshinori Ohsumi was born in Fukuoka in 1945. In 1963, he entered to The Univ. of Tokyo, and then he chose decisively to follow molecular biology as the path of his future. As a graduate student, Dr. Oshumi studied the initiation mechanism of E. coli ribosome and then action of colicin E3, which inhibits the translation of E.coli cells by binding to its receptor. Near the end of 1974, he enrolled in Rockefeller Univ., to study under Dr. G. M. Edelman. First Dr. Oshumi worked on in vitro fertilization in mice, then switched to work on the mechanism of initiation of DNA replication using yeast, which introduced him to yeast research. Dr. Ohsumi returned to Japan at the end of 1977, and worked as an assistant professor under Prof. Y. Anraku, at the Faculty of Science. The Univ. of Tokyo. Dr Ohsumi decided to take up the study of the yeast vacuolar membrane.

Dr. T. Yoshinori and N. Mizushima in his lab started studies on ATG genes in mammals and a student also worked on plant, proving studies on ATG system is well conserved in higher eukaryotes. However up to now, Dr. Ohsumi has focused on dissection of the molecular mechanism of the ATG proteins in yeast.

Autophagy is a process by which cellular components are captured into organelles called autophagosomes and then brought to the lysosome or vacuole to be broken down and recycled for other uses. It frequently comes into play during starvation, allowing cells to survive periods of privation.

He has:

  • Identified most of the proteins and pathways involved in the process
  • Demonstrated how they are regulated by proteins that sense cells metabolic states
  • Started to outline the fine mechanistic details of autophagosome formation in yeast

“The vacuole was thought to be just a garbage can in the cell, and nor very may people were interested in its physiology, so I thought it would be good to study transport in the vacuole because I would not have much competition. Another reason I chose study vacuole physiology is that, while I was in Dr. Edelman’s lab. We had tried to isolate nuclei from yeast cells, and along the way we discovered that it was easy to get pure preparations of vacuoles. Using these preparations, I was able to find many active transport systems in the vacuolar membrane, including the vacuolar-type ATPase that pumps protons into the vacuole”. (1992, The Rockefeller University Press).

“I had a very simple idea: the vacuole can be detected under the light microscope, and it was already considered to be a garbage compartment where protein degradation takes place. So, I thought it would be easy to observe morphological change in the vacuoles of cells that were undergoing lots of degradation. Cell differentiation processes require lots of protein degradation, so I looked at vacuolar proteinase-deficient mutants, which cannot sporulate as normal cells do under nitrogen-starvation conditions, to see if I could observe any changes to vacuolar structure”.

The Nobel Assembly at Karolinska Institute has decided to award the 2016 Nobel Prize in Physiology or Medicine to Yoshinori Oshumi for his discoveries of mechanisms for autophagy (2016-10-03):

This year´s Nobel Laureate discovered and elucidated mechanisms underlying autophagy, a fundamental process for degrading and recycling cellular components.

Summary

The word autophagy originates from the Greek words auto-, meaning “self”, and phagein, meaning “to eat”. Thus, autophagy denotes “self eating”. This concept emerged during the 1960´s, when researches first observed that the cell could destroy its own contents by enclosing it in membranes, forming sack-like vesicles that were transported to a recycling compartment, called the lysosome, for degradation.  Brilliant experiments in the early 1990´s, Yoshinori Ohsumi used baker´s yeast to identify genes essential for autophagy in yeast and showed that similar sophisticated machinery is used in our cells. Importance of autophagy in many physiological processes, such as in the adaptation to starvation or response to infection. Mutations in autophagy genes can cause disease, and the autophagic process is involved in several conditions cancer and neurological disease.

Degradation- a central function in all living cells

In the mid 1950´s scientists observed a new specialized cellular compartment, called an organelle, containing enzymes that digest proteins, carbohydrates and lipids. This specialized compartment is referred to as a “lysosome” and functions as a workstation for degradation of cellular constituents. Further biochemical and microscopic analysis revealed a new type of vesicle transporting cellular cargo to the lysosome for degradation. Christian de Duve, the scientist behind the discovery of the lysosome, coined the term autophagy, “self-eating”, to describe this process. The new vesicles are named autophagosomes.

During the 1970´s and 1980´s researchers focused on elucidating another system used to degrade proteins, namely the “proteasome”. Aaron Ciechanover, Avram Hershko and Irwin Rose were awarded the 2004 Nobel Prize in Chemistry for “the discovery of ubiquitin-mediated protein degradation”.

A groundbreaking experiment

Ohsumi reasoned that if he could disrupt the degradation process in the vacuole while the process of autophagy was active, then autophagosomes should accumulate within the vacuole and become visible under the microscope. He therefore cultured mutated yeast lacking vacuolar degradation enzymes and simultaneously stimulated autophagy by starving the cells. The results were striking.

Autophagy genes are discovered

Ohsumi exposed the yeast cells to a chemical that randomly introduced mutations in many genes, and then he induced autophagy. His strategy worked, identified the first genes essential for autophagy. The results showed that autophagy is controlled by a cascade of proteins and protein complexes, each regulating a distinct stage of autophagosome initiation and formation. He studied thousands of yeast mutants and identified 15 genes that are essential for autophagy and the function of the proteins encoded by key autophagy genes. He delineated how stress signals initiate autophagy and the mechanism by which proteins and protein complexes promote distinct stages of autophagosome formation.

Autophagy- an essential mechanism in our cells

Thanks to Ohsumi, autophagy controls important physiological functions where cellular components need to be degraded and recycled. Autophagy can rapidly provide fuel for energy and building blocks for renewal of cellular components, and is therefore essential for the cellular response to starvation and other types of stress.

  • After infection, autophgy can eliminate invading intracellular bacteria and viruses.
  • Autophagy contributes to embryo development and cell differentiation
  • Cells also use autophagy to eliminate damaged proteins and organelles, a quality control mechanism that is critical for counteracting the negative consequences of aging.

Disrupted autophagy has been linked to:

  • Parkinson´s disease
  • Type 2 diabetes

Mutations in autophagy genes can cause genetic disease. Disturbances in the autophagic machinery have also been linked to cancer. Research is now ongoing to develop drugs that can target autophagy in various diseases.

Biography Yoshinori Ohsumi

  • 2016-present  Professor, Institute of Innovative Research, Tokyo Institute of Technology
  • 2014-present  Honorary Professor, Tokyo Institute of Technology
  • 2010-2016    Professor, Frontier Research Center, Tokyo Institute of Technology
  • 2009-2010    Professor, Advanced Research Organization, Integrated Research Institute, Tokyo Institute of Technology
  • 2004-2009    Professor, The Graduate University for Advanced Studies [SOKENDAI]
  • 1996-2009    Professor, Department of Cell Biology, National Institute for Basic Biology
  • 1988-1996    Associate Professor, Department of Biology, College of Arts and Sciences, The University of Tokyo
  • 1986-1988    Lecturer, Department of Biology, Faculty of Science, The University of Tokyo
  • 1977-1986    Research Associate, Department of Biology, Faculty of Science, The University of Tokyo, with Prof. Yasuhiro Anraku
  • 1974-1977    Postdoctoral Fellow, Rockefeller University with Prof. Gerald M. Edelman
  • 1972-1974    Research Fellow, Department of Agricultural Chemistry, Faculty of Agriculture, The University of Tokyo
  • 1967-1972    Graduate Student, Department of Biochemistry, College of Arts and Sciences, The University of Tokyo, with Prof. Kazutomo Imahori
  • 1963-1967    Undergraduate Student, Department of Basic Science, College of Arts and Sciences, The University of Tokyo Awards

Key publications

  • Takeshige, K., Baba, M., Tsuboi, S., Noda, T. and Ohsumi, Y. (1992). “Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction”. Journal of Cell Biology 119, 301-311
  • Tsukada, M. and Ohsumi, Y. (1993). “Isolation and characterization of autophagy-defective mutants of Saccharomyces cervisiae”. FEBS Letters 333, 169-174
  • Mizushima, N., Noda, T., Yoshimori, T., Tanaka, Y., Ishii, T., George, M.D., Klionsky, D.J., Ohsumi, M. and Ohsumi, Y. (1998). “A protein conjugation system essential for autophagy”. Nature 395, 395-398
  • Ichimura, Y., Kirisako T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., Mizushima, N., Tanida, I., Kominami, E., Ohsumi, M., Noda, T. and Ohsumi, Y. (2000). “A ubiquitin-like system mediates protein lipidation” Nature, 408, 488-492

Related Links

  • Yoshinori Ohsumi wins medicine Nobel Prize

https://www.youtube.com/watch?v=81W5OwTdxjw

  • Autophagy

Estadísticas del sitio

  • 361.557 hits

Introduce tu correo electrónico para suscribirte a este blog y recibir avisos de nuevas entradas.

Únete a otros 205 suscriptores

Entradas recientes

  • BRIGADA AL SALVADOR
  • Consideraciones a la 4ª Brigada Urológica a Oaxaca (México) (diciembre-2023)
  • Proyecto M2: Telescopio Euclid
  • “San Alonso de Orozco: culto, historia y arte”
  • Comunicación de la obra pictórica: galerías, exposiciones y redes sociales
diciembre 2025
S D L M X J V
 12345
6789101112
13141516171819
20212223242526
2728293031  
« May    

Categorías

Estadísticas del sitio

  • 361.557 hits

Entradas recientes

  • BRIGADA AL SALVADOR
  • Consideraciones a la 4ª Brigada Urológica a Oaxaca (México) (diciembre-2023)
  • Proyecto M2: Telescopio Euclid
  • “San Alonso de Orozco: culto, historia y arte”
  • Comunicación de la obra pictórica: galerías, exposiciones y redes sociales

Enter your email address to follow this blog and receive notifications of new posts by email.

diciembre 2025
S D L M X J V
 12345
6789101112
13141516171819
20212223242526
2728293031  
« May    

Páginas

  • Perfil

Categorías

Meta

  • Crear cuenta
  • Iniciar sesión
  • Feed de entradas
  • Feed de comentarios
  • WordPress.com

Crea un blog o una web gratis con WordPress.com.

Privacidad y cookies: este sitio utiliza cookies. Al continuar utilizando esta web, aceptas su uso.
Para obtener más información, incluido cómo controlar las cookies, consulta aquí: Política de cookies
  • Suscribirse Suscrito
    • Blog de José Félix Rodríguez Antón
    • Únete a otros 205 suscriptores
    • ¿Ya tienes una cuenta de WordPress.com? Inicia sesión.
    • Blog de José Félix Rodríguez Antón
    • Suscribirse Suscrito
    • Regístrate
    • Iniciar sesión
    • Denunciar este contenido
    • Ver el sitio en el Lector
    • Gestionar las suscripciones
    • Contraer esta barra
 

Cargando comentarios...