Etiquetas
antropología, Evolución, fisiología, Genética, Primates, tricomía, visión tricolor

A lo largo de su evolución, mientras que los Primates se iban independizando progresivamente del sentido del olfato se hacían dependientes del de la vista. Los primates para discriminar los colores rojo-verde tenían más ventaja para detectar frutas maduras u hojas jóvenes, con una mayor supervivencia y heredando los genes que permiten la visión tricromática.


La visión de los colores en los humanos y otros primates es diferente de la de los mamíferos no primates. Parece que la tricomacia (tres pigmentos activados por la luz en la retina del ojo) de los primates es una cosa exclusiva, las investigaciones sobre la genética, biología molecular y neurofisiología nos ayudan a entender su evolución.

La tricromacia se debe a que la retina (la capa de células nerviosas del ojo que captura la luz y transmite la información visual al cerebro) utiliza para la visión de los colores solo tres tipos de pigmentos que absorben la luz.
La teoría más aceptada (Young-Helmholtz) o tricromía explica los tres tipos de receptores para los colores principales: rojo, verde y azul. En 1802, Thomas Young sugirió que la visión de los colores en los seres humanos es tricromática. Debido a que los conos de la retina contienen tres tipos de receptores, los cuales corresponden a una longitud de onda larga (rojo), mediana (verde) o corta (azul).

Los espectros de absorción están solapados para los tres fotorreceptores, poseen un pico para longitud de onda:
– 420 nm azul pigmento S (onda corta)
– 530 nm verde pigmento M (onda media)
– 560 nm rojo pigmento L (onda larga)
La tricromacia no es general en el reino animal. La tricromacia de los primates parece una cosa insólita, el ojo tricromático podría distinguir entre 1559 tonalidades diferentes, pude percibir una infinita gama de colores entre el amarillo, el azul y el rojo. Los mamíferos no primates son dicrómatas (dos tipos de pigmentos visuales el amarillo y el azul) como el perro y el gato. Algunos mamíferos nocturnos solo tienen un pigmento: monocromacia. La tetracromacia se da en peces de aguas dulces y en reptiles y aves diurnas. Los seres acromatópsicos no tienen capacidad de precepción del color y se desarrollan en medios sin luz como peces abisales o rapaces nocturnas.
Los monos de gran tamaño como macaco y chimpancé de Asia y África del Viejo Mundo o catarrinos, tienen visión tricromática. Los monos de pequeño tamaño de América del sur del Nuevo Mundo o platirrinos, son dicromáticos.
El receptor azul: está codificado por un gen autosómico localizado en 7q31.3-q32, para el pigmento S localizado en un cromosoma no sexual.
Los genes para los receptores del rojo y el verde: se localizan en el cromosoma X en Xq28, para la longitud de onda L localizado en el cromosoma X.
Hace 800 millones de años, un pigmento visual ancestral divergió por duplicación que originó el pigmento de los bastones (la rodopsina) y otro pigmento de los conos sin diferenciar.
Hace 500 millones de años, por duplicación se originó un gen para el pigmento azul (bajas longitudes de onda) y otro gen para un pigmento verde-rojo (medianas longitudes de onda).
Hace 30-40 millones de años, después de la separación de los monos del Viejo Mundo y el Nuevo Mundo, se duplicó el gen para el pigmento verde-rojo, haciendo portadora de dos alelos diferentes del gen para el pigmento onda media-larga. De esta forma los monos del Viejo Mundo poseen visión tricolor y los del Nuevo Mundo tienen visión dicromática (azul y verde-rojo).

Así la Tectónica de Placas nos explica como los monos del Viejo y Nuevo Mundo empezaron a separarse hace 40 millones de años, divergiendo en dos mecanismos diferentes de visión.
Los Primates nocturnos poseen grandes ojos y prácticamente solo hay bastones, con poco poder de resolución pero que responden a bajas intensidades de luz. Los primeros mamíferos evolucionaron en una explosión durante el periodo Jurásico, para encontrar comida y sobrevivir frente a los dinosaurios depredadores dominantes durante el día.
Los análisis de los genes nos aportan información sobre la evolución de la tricromacia a partir de la visión de los colores en los mamíferos no primates. A partir de ratones transgénicos (a los que se les ha insertado un gen de un pigmento humano) estos roedores distinguen más colores.
Amanda Melin llevo a cabo un estudio con dos grupos de monos:
– dicromáticos del Nuevo Mundo (catarrinos), con canal cromático “blue-yellow”
– tricomáticos del Viejo Mundo (platirrinos), que tienen canal cromático “red-green” y su capacidad para distinguir la fruta del follaje herbáceo, con variación del alelo L-M del gen opsina del cromosoma X vio que el “contraste de luminosidad” (propio de la visión acromática) es lo que determinaba la eficiencia en la variación, contrario a lo que se pensaba de la cromática que aporta más definición en tonalidad y saturación del color.
En el fondo del ojo existen millones de células especializadas en detectar longitudes de onda procedentes del entorno. Estas células son principalmente los conos y los bastones, recogen los elementos del espectro de luz solar y las transforman en impulsos eléctricos, que son enviados al cerebro a través de los nervios ópticos. El cerebro a través de la corteza visual del lóbulo occipital, hace consciente la percepción del color.

Los conos se concentran en una región cercana al centro de la retina llamada fóvea. La cantidad es de 6 millones. Son los responsables de la visión del color, sensibles al rojo, verde y azul. Son los responsables de la definición espacial, intensidad de la luz y proporcionan visión fotópica (visión a altos niveles).
Los bastones se concentran en las zonas alejadas de la fóvea y son los responsables de la visión escotópica (a bajos niveles). La cantidad de bastones se sitúa alrededor de 100 millones y no son sensibles al color, son más sensibles a la intensidad luminosa que los conos.
Las alteraciones genéticas llevan asociadas patologías como el daltonismo: alteración de la capacidad de discriminar los colores. También hay “acromatopsias”: falta de visión de los colores; «discromatopsias»: cegueras parciales de los colores.
El “fenómeno de adaptación de los conos”, se agotan de mirar un mismo color y entonces el cerebro lo ve con un brillo menor. Se tiene la ilusión óptica de que los colores o dibujos se están moviendo.
La entrada de la luz también está regulada por la pupila, que pude producir “midriasis” (aumenta la entrada de luz) o “miosis” (disminuirla).
Bibliografía:
• Valls, Arturo; “Introducción a la antropología”, Ed. Labor; 1980
• Guyton y Hall; “Fisiología del ojo” Ed. Elsevier; 2016
Fisiologia ojo cap 50 guyton from Rocio Delgado
http://ual.dyndns.org/biblioteca/fisiologia/Pdf/Unidad%2010.pdf
• Gerald H. Jacobs & Jeremy Nathans; “Evolución de la visión de los colores en los primates”; Investigación y Ciencia; 2009
• Urtubia Vicario, Cesar; “¿Por qué los primates son los únicos mamíferos que poseen visión tricromática”; Congreso Nacional del Color; Universidad de Alicante; 2010
• Fernández Jacob, Carmen; “Evolución y filogenia de la visión cromática”; Hospital La Paz; 2014
• Amanda Melin y cols.; “Importance of achromatic contrast in short-range fruit foraging of primates”; PLoS One 3; 2008
• Benjamin A. Pierce“Genética” Ed. Panamericana; 2010