• Perfil

Blog de José Félix Rodríguez Antón

~ conocimiento de las cosas

Blog de José Félix Rodríguez Antón

Archivos mensuales: agosto 2019

El mar que nos rodea

31 sábado Ago 2019

Posted by José Félix Rodríguez Antón in Bioquímica, CIENCIA, Geodinámica, LIBROS

≈ Deja un comentario

Etiquetas

agua, ciclo hidrológico, corriente marina, Ecología, iceberg, océano, ola, Rachel Carson, The Sea Around Us

el mar 4

Los océanos son siete décimas partes de la superficie total del Globo. El agua es un líquido esencial para la vida animal y vegetal, tanto en su evolución como en la formación del planeta.
En su ciclo hidrológico establece contacto con la atmósfera, la superficie terrestre y los seres vivos; moldeando a lo largo de las épocas geológicas: los continentes y los fondos oceánicos.
Rachel Carson bióloga marina y profesora, en 1950 publica “The Sea Around” siendo éxito de ventas, donde nos muestra: la historia, la geología y zoología de los océanos, sin haber perdido vigencia y rigor científico

 

 

Rachel Carson (1907-1964) estudió Biología Marina en Johns Hopkins University, enseño Zoología en la Universidad de Maryland y trabajó para el U.S. Fish and Wildlife Service. Comenzó su carrera como limnóloga en el U.S. Bureau of Fisheries, a partir de la década de los años 1950, tuvo una gran actividad como escritora naturalista; destacando:
– “The Sea Around”
– “The Edge of the Sea”
– “Under the Sea Wind”
Esta trilogía nos describe los océanos desde las costas hasta las profundidades.

 

El mar que nos rodea

En su libro “El mar que nos rodea”, un clásico de la Ecología, se remonta al origen de la vida ligada al agua, y nos explica el proceso de formación de los océanos. El libro está dividido en tres partes:
1) El mar. Cuna de la vida: narración de su origen y formación
2) La Inquietud del mar: el viento, el Sol, rotación terrestre y las mareas
3) El hombre y el mar que le rodea: termostato del globo, importancia en las rutas comerciales.

 

 

La mayor reserva de agua se encuentra en los océanos:
– Océanos: 97%
– Glaciares y casquetes polares: 2,24%
– Agua subterránea: 0,61%
– Ríos, lagos y corrientes: 0,2%
– Atmósfera: escasamente un billón de m3 de agua

 

el mar 7
En el “ciclo hidrológico” el agua a través de los ríos establece contacto con los gases de la atmósfera y los minerales de la corteza terrestre. De los océanos el agua se evapora y es transportada sobre la superficie terrestre donde se deposita en forma de lluvia, nieve o granizo. Al caer el agua establece contacto con rocas, sedimentos, suelo y seres vivos animales y vegetales de la superficie terrestre.

 

 

El agua de los océanos es una disolución de sales que se han acumulado a lo largo de los tiempos geológicos procedentes de los continentes. La evaporación del agua del mar, deja los residuos de sales. El cloro es el 55% del peso de toda la materia disuelta y el sodio el 31%.
La proporción de sales disueltas en agua pura se denomina “salinidad”, se mide en tanto por mil en peso. La densidad de una sustancia es la masa de una unidad de volumen. El agua del océano tiene una densidad que oscila entre 1.027 y 1.028. La densidad del agua del mar es determinada por dos factores: la salinidad y la temperatura. Cuanto mayor es la salinidad, mayor es la densidad.
A medida que la salinidad aumenta se requiere una temperatura de congelación más baja: el punto de congelación disminuye. El agua caliente al ser más ligera que el agua fría tiende a ir hacia la superficie, pero a temperaturas próximas a 0ºC la tendencia se invierte y el agua caliente es más pesada que la fría, el máximo de densidad se alcanza a 4ºC, esto se conoce como “anomalía térmica del agua”. Así el calor se pierde por conducción y no por convección (más lento) impidiendo que el agua se congele por completo.

 
Las propiedades físicas del agua son:
– Punto de fusión: 0ºC
– Punto de ebullición: 100ºC
– Capacidad disolvente
– Elevada constante dieléctrica
– Bajo grado de ionización
– Alto calor de vaporización
– Alto calor específico

 

 

En la superficie de los océanos podemos encontrarnos los siguientes fenómenos: olas, corrientes marinas y los icebergs.

el mar 5
Las olas marinas son producidas por el viento: la energía del aire en movimiento se transmite a las ondas de agua, erosionando las costas de los continentes y produciendo plataformas. Son “ondas oscilatorias progresivas” ya que se propagan a través del agua originando un movimiento oscilatorio. Hay dos tipos de olas: de viento y marejada. Las de marejada son olas de viento que abandonan la región donde se formaron, de menos intensidad o calma y van disminuyendo gradualmente de tamaño.

 

Corrientes-oceanicas el mar 7
Corrientes marinas, son causadas por los vientos que soplan sobre la superficie. La acción del viento y las diferencias de densidad forman un sistema de circulación oceánica con movimientos horizontales y verticales. Debido a la “fuerza de Coriolis”, el movimiento del agua se ve desviado hacia la derecha en el hemisferio norte. En los océanos Ártico y Antártico se sumerge el agua enfriada hacia el fondo, desplazándose hacia el ecuador y desplazando hacia arriba el agua menos densa y más cálida.” Una corriente ecuatorial” indica cinturón de los alisios, las corrientes ecuatoriales están separadas por una “contracorriente ecuatorial”. La corriente ecuatorial se dirige hacia los polos, en las latitudes bajas y a lo largo de los bordes de los bordes occidentales de los océanos, dando lugar a una corriente paralela a la costa: corriente del Golfo, corriente del Japón y corriente del Brasil.

el mar 6

Los icebergs se forman al separarse grandes bloques de hielo de un valle glaciar o de un casquete de hielo que penetra en el mar.

 

El agua de los ríos y torrentes es un vehículo de transporte de los residuos, que van a parar al mar. El mar tiene mecanismos biológicos y fisicoquímicos de autodepuración. Pero en los últimos 50 años se están produciendo una gran cantidad de residuos que se vierten a los ríos.

 

el mar 1
Un componente esencial de las aguas es el oxígeno disuelto; para desarrollarse la vida. Otro gas es el CO2. Las principales reacciones químicas que hay en el agua son: oxido-reducción, ácido-base y complejación. Las aguas con altos valores de BOD o de COD tienen en disolución mucha materia orgánica, que empobrece los niveles de oxígeno.

 

BOD (Biological Oxygen Demand): demanda biológica de oxígeno, mide la cantidad de dioxígeno consumido al degradar la materia orgánica de una muestra líquida. Es la materia susceptible de ser consumida u oxidada por medios biológicos que contiene una muestra líquida, disuelta o en suspensión..
COD (Chemical Oxygen Demand): cantidad de sustancias susceptibles de ser oxidadas por medios químicos que hay disueltas o en suspensión en una muestra líquida. Mide el grado de contaminación.
TOC (Total Organic Carbon): cantidad de carbono unido a un compuesto orgánico y se usa como un indicador de calidad del agua o del grado de limpieza.

 

Los contaminantes principales son:
– Contaminantes inorgánicos: de metalurgia y actividad mineral (Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ag, Zn, CN-)
– Nutrientes en exceso
– Contaminantes que alteran el PH (ácido o alcalino) y la salinidad del agua
– Contaminantes en aguas residuales urbanas: compuestos químicos y microorganismos

el mar 3

En resumen, los océanos son el origen de la vida en el planeta Tierra, fuente de recursos y moldean los fondos marinos, los continentes y el clima. Científicos como Raquel Carson nos enseñan sus secretos y como cuidarlo, cuidando así nuestra supervivencia.

 
Bibliografía:

 

• National Book Foundation: Raquel Carson

Rachel Carson


• Raquel Carson; “El mar que nos rodea”; Ed. Planeta, Critica. 2019
• University of Maryland: Rachel Carson
http://136.160.254.67/cbl/research-discovery/rv-rachel-carson
• Vernon L. Snoeyink & David Jenkins; “Química del agua”; Ed. Limusa, México. 1990.
• Arthur N. Strahler; “Geografía Física”; Ed. Omega, Barcelona. 1984
• Xavier Doménech; “Química ambiental. El impacto de los residuos”; Miraguano Ediciones. Madrid. 1994
• CarbajaL Azcona, Ángeles; González Fernández, María; “El agua para la salud, pasado, presente y futuro”. Vaquero y Tosqui. Ed. CSIC. Dpto. de Nutrición. Facultad de Farmacia. Universidad Complutense.2012

Haz clic para acceder a 458-2013-07-24-Carbajal-Gonzalez-2012-ISBN-978-84-00-09572-7.pdf

 

Anuncio publicitario

Los factores de crecimiento: neuroplasticidad

25 domingo Ago 2019

Posted by José Félix Rodríguez Antón in Bioquímica, CIENCIA

≈ Deja un comentario

Etiquetas

factores de crecimiento, neuroplasticidad, NGF, Rita Levi-Montalcini

portada_elogio-de-la-imperfeccion_rita-levi-montalcini_201502222046

 

En 1947 Rita Levi-Montalcini y Stanley Cohen de la Universidad de Washington en San Luis, descubren el factor de crecimiento nervioso (FCN o NGF– nerve growth factor-) y recibieron el Premio Nobel de Fisiología o Medicina en 1986. Supone un avance en el conocimiento de la embriología.

 
Los factores de crecimiento (polipéptidos) controlan el crecimiento y la diferenciación de las células animales.
NGF fue el primero de una serie de factores que dirigen el desarrollo del feto, alteraciones de estos son los causantes de muchas malformaciones congénitas y tumores en el ser humano.

 
En “Elogio de la imperfección”, Rita Levi-Montalcini hace un recorrido por su trayectoria profesional y vital. Nace en una familia judía, durante la primera guerra mundial. Pasa su infancia en Turín. Se matricula en medicina en 1930, ayudante del histólogo Giusepppe Levi. Después de la segunda guerra mundial desarrolla su carrera científica en Estados Unidos.
En 1947 Viktor Hamburguer de la Universidad de Washington; experto sobre el desarrollo del sistema nervioso en el embrión de pollo, le ayudó a profundizar en el conocimiento de un tipo de tumor de ratón: cuando se trasplantaba al embrión de pollo, causaba un crecimiento de las fibras nerviosas relacionadas con la transmisión de los impulsos sensoriales. Ese crecimiento no requería un contacto directo con el tumor; liberándose al medio algún tipo de factor que estimulaba el crecimiento de los nervios: el factor de crecimiento nervioso NGF.

 

1200px-1NQL
Los factores de crecimiento neuronal – neurotrofinas– son proteínas presentes en el sistema nervioso y otros sistemas del cuerpo humano, necesarias para la supervivencia y desarrollo de las neuronas en el período embrionario. Guían a sus axones hacia las conexiones para formar “circuitos neuronales” y evitar la muerte celular.

 
En el adulto también son importantes para la “plasticidad cerebral”: un correcto neurodesarrollo. Las neurotrofinas permiten fortalecer las conexiones neuronales en:
– Aprendizaje
– Memoria
– Regeneración neuronal
En el sistema nervioso central existen neuronas colinérgicas sensitivas sensibles a FCN, que inervan diferentes estructuras, incluido el hipocampo, que realiza un importante papel en la memoria y en el aprendizaje (juega un papel fundamental en el almacenamiento de la información nueva en la memoria, existen circuitos y áreas cerebrales implicados en la memoria a corto y largo plazo).

 
Los factores de crecimiento neuronal son importantes para el estudio de:
– Trastornos del neurodesarrollo: autismo, trastorno por déficit de atención-hiperactividad
– Enfermedades neurodegenerativas: demencia del Alzheimer, la corea de Huntington
– Trastornos psiquiátricos: depresión y ansiedad.
Los factores de crecimiento, los receptores y los intermediarios que propagan la señal por el interior de la célula, pueden estropearse, ocasionando malformaciones congénitas, procesos degenerativos y tipos de cáncer.

 
Levi-Montalcini y sus colaboradores demostraron que el NGF tiene la misma función en:
– Reptiles
– Aves
– Anfibios
– Peces
– Mamíferos

 
Tipos de factores de crecimiento:

 

– PDGF, platelet-derived growth: factor de crecimiento derivado de plaquetas, regulador esencial de los procesos de coagulación y cicatrizado.
– TGF-beta; BMPs, proteínas morfogenéticas del hueso: factor de crecimiento transformante beta
– FGF y KGF: factores de crecimiento de los fibroblastos
– EGF y relacionados TGF-alfa: factor de crecimiento epidérmico
– HGF: factor de crecimiento de los hepatocitos
– VEGF, vascular endotelial growth factor: factor de crecimiento endotelial vascular
– IGF.1, insulin-like growth factor-1: factor de crecimiento insulínico tipo 1, los IGF (factores de crecimiento similares a la insulina, o somatomedinas); ordenan crecer a todos los tejidos del cuerpo, incluido el hueso. Si los niveles de IGF son bajos, hay deficiencias de crecimiento. Los niveles altos ocasionan problemas como acromegalia.
– NGF: factor de crecimiento nervioso
– G-CSF, granulocyte-colony stimulating factor: factor estimulante de colonias de granulocitos
– GM-CSF, granulocyte-macrophage colony stimulating factor: factor estimulante de colonias de granulocito y macrófagos
– EPO: eritropoyetina, estimula a las células de la médula ósea a producir glóbulos rojos, que transportan el oxígeno por la sangre.
– TPO: trombopoyetina
– SCF, stem cell factor: factor de células madre

 
Bibliografía:

 

• Rita Levi- Montalcini; “Elogio de la imperfección”; Ed. Booket, 2015

 

• Geoffrey M. Cooper & Robert E. Hausman; “La célula”; Ed. Marban, 2004

 

• El factor de crecimiento nervioso. Investigación y Ciencia
https://www.investigacionyciencia.es/revistas/investigacion-y-ciencia/teora-de-nudos-35/el-factor-de-crecimiento-nervioso-2632

 

• The Nobel prize
https://www.nobelprize.org/prizes/medicine/1986/levi-montalcini/facts/

 

• Levi-Montalcini UNED

 
• Levi- Montalcini St. Louis University

http://beckerexhibits.wustl.edu/mowihsp/bios/levi_montalcini.htm

¿Producen los eructos de las vacas cambio climático?

13 martes Ago 2019

Posted by José Félix Rodríguez Antón in Bioquímica, CIENCIA

≈ Deja un comentario

Etiquetas

APE, cambio climático, carne, FAO, ganadería, ganado vacuno, GEI gases efecto invernadero

vacas ok.jpg

 

El cambio climático en el planeta esta aumentado, se argumenta que la producción de carne está produciendo más “efecto invernadero” que todos los coches.
Según la FAO, en EE. UU las emisiones de gases con efecto invernadero han disminuido un 11,3% desde 1961, pero la producción de carne procedente de la ganadería se ha duplicado. La demanda de carne procedente de la ganadería se ha multiplicado en los países emergentes y en vías de desarrollo, con Oriente Medio, el norte de África y el sudeste asiático a la cabeza.

Emisiones metano por especies ok

 

Intensidad de emisiones por producto ok
El punto de partida debe de situarse en hechos amparados por la ciencia. El 77% de los animales que se producen para la alimentación en el mundo son el pollo y el cerdo y el 22% el vacuno. Cada especie contribuye al cambio climático de manera diferente:
– Los rumiantes, poligástricos (estómago dividido en cuatro compartimentos- vacas, cabras, ovejas) con la emisión de gas metano.
– Los monogástricos (cerdos, aves, caballos, conejos, peces) con la de óxido nitroso y de CO2.

 

Estómagorumiantes ok
El metano tiene un potencial de calentamiento 28 veces mayor que el CO2 y dura en la atmósfera diez años. Pero el CO2 y el óxido nitroso duran más de 100 años.
De todas formas, hay que replantearse que la sociedad consume mucha proteína animal y que hay que bajar el consumo. En unas partes del mundo es imperativo reducir el consumo de proteína animal y otras partes la gente necesita aumentar el consumo de carne porque tienen una lista baja de proteínas.

 

 

Según la APE (Agencia de Protección Ambiental de Estados Unidos), las principales fuentes de emisión de GEI (gases de efecto invernadero) durante el 2016 fueron:
– La producción eléctrica 28%
– El transporte 28%
– La industria 22%
– La agricultura y la ganadería 9% (la ganadería 3,9%)

 

 

En 2006, la FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura), la ganadería producía un 18% de los gases de efecto invernadero en todo el planeta.

 

 

El error está en que la FAO llevó a cabo una evaluación integral del ciclo de vida para estudiar el impacto climático de la crianza del ganado, teniendo en cuenta los factores asociados a la producción de carne:
– Emisiones generadas por la elaboración de fertilizantes
– La conversión de bosques en pastos
– Cultivo de pienso
– Emisiones provenientes de los animales (eructos y deposiciones) desde su nacimiento hasta su muerte.
Estudios recientes llevados a cabo por Frank M. Mitloehner de la Universidad de California, en Davis: demuestran que, si todos los estadounidenses eliminasen todas las proteínas animales de sus dietas, las emisiones de gases de efecto invernadero del país solo se verían reducidas en un 2,6%.

 

 

Efectos positivos del ganado rumiante en la población:
a) Los cambios genéticos, tecnológicos y de gestión que se han llevado a cabo en la agricultura y ganadería de Estados Unidos han producido una gestión ganadera más eficiente.
b) Los humanos necesitamos micro y macronutrientes procedentes de la carne.
c) La celulosa aporta energía que solo se libera mediante la digestión de los rumiantes (vacas, ovejas)
d) El 70% de las tierras agrícolas son “dehesas” que solo puede ser aprovechada por ganado rumiante.
e) Los nutrientes para una población con un crecimiento exponencial (9.800 millones en 2050) solo pueden ser aportados a gran escala mediante el consumo de carne.
f) La ganadería es una fuente de ingresos de millones de personas en todo el mundo.

 
Según los diferentes tipos de dietas; hay diferente impacto ambiental: desde las basadas en pescados, la flexiteriana (consumo bajo de proteína animal), las vegetarianas, la mediterránea (la mediterránea tiene impactos muy buenos en la reducción del CO2 y en la salud).
En 2015 el consumo de carne anual per cápita:
– en los países de economías estables: 92 kilos
– en Oriente Medio y en el norte de África: 24 kilos
– en el sudeste asiático: 18 kilos

 

Países de economías estables como EE. UU deberán adoptar medidas sostenibles para la cría del ganado, si se reduce en algunas partes del mundo el consumo de carne se reducen las emisiones de efecto invernadero, pero hay partes del planeta donde la gente necesita aumentar el consumo de carne porque tienen una dieta baja en proteínas.

 

En Estados Unidos hay desiertos alimentarios “ambiente obesogénico”: áreas pobres en las que no se encuentran frutas y verduras, solo fastfood.
Existe la posibilidad de que Bruselas grave la producción agroganadera: con un impuesto a la leche y la carne europea, para controlar las emisiones de gases de efecto invernadero.

 

Ciclo del carbono

Principales gases con efecto invernadero:

 

A los gases que atrapan calor en la atmósfera se les llama “gases de efecto invernadero” GEI, las formas de eliminación de los principales gases.

 

– Dióxido de carbono (CO2): procede de la quema de combustibles fósiles (carbón, gas natural y petróleo), residuos sólidos, árboles.
– Metano (CH4): se emite en la producción de carbón, gas natural y petróleo. Prácticas ganaderas y agrícolas, descomposición de residuos orgánicos.
– Óxido nitroso (N2O): actividades agrícolas e industriales, combustibles fósiles y residuos.
– Gases fluorados: hidrofluorocarbonados, perfluorocarbonos, hexafluoruro de azufre y trifluoruro de nitrógeno.

 

 

“La concentración” es la cantidad de un gas específico en el aire. Las concentraciones más altas generan más efecto invernadero (se mide partes por millón, partes por mil millones y partes por mil billones).

 

Estos gases pueden permanecer durante diferentes periodos de tiempo, desde unos pocos años hasta miles.

 

Para cada gas se ha calculado el efecto invernadero: Potencial de Calentamiento Global (Global Warming Potential, GWP) (capacidad de calentar la atmósfera y tiempo promedio que permanece); los que tienen más alto GWP tienen más efecto.
Bibliografía:

 

• National Geographic El eructo de las vacas y el medio ambiente
https://www.nationalgeographic.es/medio-ambiente/2019/07/eliminar-eructos-metano-vacas-cria-selectiva

 
• EPA Agencia de Protección Ambiental de EE.UU. Las vacas y efecto invernadero
https://espanol.epa.gov/la-energia-y-el-medioambiente/descripcion-general-de-los-gases-de-efecto-invernadero

 
• FAO Emisiones ambientales de animales de granja
http://www.fao.org/gleam/results/es/

Haz clic para acceder a a-i4260s.PDF

 
• Frank M. Mitloehner; “Yes, eating meat affects the environment, but cows are not killing the climate”, The Conversation; 2018
https://theconversation.com/yes-eating-meat-affects-the-environment-but-cows-are-not-killing-the-climate-94968

 
• Frank M. Mitloehner; “Livestock´s Long Shadow”, ACS Chemistry for life; 2010
https://www.acs.org/content/acs/en/pressroom/newsreleases/2010/march/eating-less-meat-and-dairy-products-wont-have-major-impact-on-global-warming.html

 
• Maurice E. Pitesky, Kimberly R. Stackhouse& Frank M. Mitloehner; “Clearing the air: Livestock´s contribution to climate change” 239 th National Meeting of the American Chemical Society; Advances in Agronomy, Elsevier; 2009

Haz clic para acceder a PiteskyClearingAir.pdf

 
• Bonilla Cárdenas, Jorge Armando & Lemus Flores, Clemente; “Enteric methane emission by ruminants and its contribution to global climate change”, Revista Mexicana de ciencias pecuarias, 2007
http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-11242012000200006

Estadísticas del sitio

  • 275.211 hits

Introduce tu correo electrónico para suscribirte a este blog y recibir avisos de nuevas entradas.

Únete a otros 1.440 suscriptores

Entradas recientes

  • Morfogénesis en los vegetales
  • Luis Siret
  • Yellowstone National Park
  • La economía circular
  • El cromosoma Y
agosto 2019
S D L M X J V
 12
3456789
10111213141516
17181920212223
24252627282930
31  
« Jul   Sep »

Categorías

Estadísticas del sitio

  • 275.211 hits

Entradas recientes

  • Morfogénesis en los vegetales
  • Luis Siret
  • Yellowstone National Park
  • La economía circular
  • El cromosoma Y

Enter your email address to follow this blog and receive notifications of new posts by email.

agosto 2019
S D L M X J V
 12
3456789
10111213141516
17181920212223
24252627282930
31  
« Jul   Sep »

Páginas

  • Perfil

Categorías

Blogroll

  • WordPress.com
  • WordPress.org

Meta

  • Registro
  • Acceder
  • Feed de entradas
  • Feed de comentarios
  • WordPress.com

Blog de WordPress.com.

Privacidad y cookies: este sitio utiliza cookies. Al continuar utilizando esta web, aceptas su uso.
Para obtener más información, incluido cómo controlar las cookies, consulta aquí: Política de cookies
  • Seguir Siguiendo
    • Blog de José Félix Rodríguez Antón
    • Únete a 194 seguidores más
    • ¿Ya tienes una cuenta de WordPress.com? Accede ahora.
    • Blog de José Félix Rodríguez Antón
    • Personalizar
    • Seguir Siguiendo
    • Regístrate
    • Acceder
    • Denunciar este contenido
    • Ver sitio web en el Lector
    • Gestionar las suscripciones
    • Contraer esta barra
 

Cargando comentarios...