• Perfil

Blog de José Félix Rodríguez Antón

~ conocimiento de las cosas

Blog de José Félix Rodríguez Antón

Archivos de etiqueta: ADN

Premio Nobel de Medicina 2022

09 domingo Oct 2022

Posted by José Félix Rodríguez Antón in CIENCIA, HUMANIDADES

≈ Deja un comentario

Etiquetas

ADN, denosivano, neandertal, paleogenética, Premio Nobel, Svante Pääbo

Svante Pääbo es un biólogo sueco especialista en genética evolutiva su madre Karin Pääbo era química y su padre Sune Bergström bioquímico que recibió el premio Nobel de Medicina en 1982 por sus estudios sobre las prostaglandinas y sustancias biológicamente activas que están relacionadas.

Cursó estudios de Historia de la Ciencia, Egiptología, Ruso y Medicina en la Universidad de Uppsala (Suecia), que completó con estudios de biología molecular en las universidades de Zürich (Suiza) y California (EE.UU).
Obtuvo su doctorado en Inmunología, después del doctorado trabajó en el equipo del biólogo evolutivo Allan Wilson en la Universidad de California.
Desde 1990 dirige su laboratorio en la Universidad de Ludwig Maximilians de Munich que compatibiliza desde 1997 con la dirección del Departamento de Genética del Instituto Max Planck de Antropología Evolutiva de Leipzig (Alemania).

Svante Pääbo ha descifrado el código genético de nuestros parientes los Neandertales, a partir del ADN mitocondrial de huesos, labor aparentemente imposible. También ha descubierto un homínido extinto: el denosivano, a partir del genoma de un hueso meñique.


Ha secuenciado el ADN mitocondrial entre los simios y los primeros humanos, de un fémur hallado en la Sima de los Huesos de Atapuerca (Burgos) de hace 400.000 años. Estos huesos han sido contaminados hasta en un 99% por ADN de bacterias y hongos que los han colonizado


El equipo ha buscado soluciones.


a) trabajaron en condiciones de «sala limpia«
b) desarrollaron métodos de extracción para mejorar el rendimiento del ADN neandertal con programas informáticos que comparan fragmentos de ADN de huesos antiguos con el de chimpancés y humanos


Esta información del ADN neandertal nos ayuda a entender:

  • cómo cuando los humanos abandonaron África y se expandieron por Europa y África, se habían reproducido con los neandertales hace 50.000 años.
  • como el ADN neandertal que se encuentra en las personas ha fortalecido el sistema inmunológico y le hace a la vez susceptible a enfermedades.
  • comprender que diferencia las habilidades cognitivas de los humanos modernos de las de los homínidos extintos.

El ADN de las mitocondrias se hereda exclusivamente por la vía materna, debió existir una Eva mitocondrial en África hace unos ciento setenta mil años.


Bryan Sykes, un genetista, ensayista y profesor británico de genética humana en el Instituto de Medicina Molecular de la Universidad de Oxford, publicó «Las siete hijas de Eva», según el con los estudios del ADN mitocondrial había podido rastrear el origen de casi todos los europeos actuales, remontándose a una población fundadora de siete mujeres.


Según la norma ISO 14644- 1 una sala limpia ISO 8 tiene que tener menos de 3.520.000 de partículas de tamaño ≥ 0,5 micras por metro cúbico de aire. Se usa en los desarrollos de software bajo un control de calidad.

Bibliografía:

Max Planck Institute: «Proyecto Genoma Neandertal»
https://www.mpg.de/13886400/neandertaler-genom-projekt

Max Planck Institute; «Svante Pääbo«
https://www.eva.mpg.de/genetics/staff/paabo/

Museo de la Evolución Humana
https://www.museoevolucionhumana.com/,

Risen, Clay;«Bryan Sykes, Who Saw the Ancient Past in Genes, Dies at 73», The New York Times, 2001
https://www.nytimes.com/2021/01/06/science/bryan-sykes-dead.html

Sykes, Bryan . «Las siete hijas de Eva. Editorial Debate», 2001.
ISBN 978-84-8306-476-4.

Documento UNE-EN ISO14644 AENOR: «Sala limpia»

https://hospitecnia.com/documentacion/normativas/normas-une-en-referentes-a-salas-limpias-y-locales-anexos-controlados/#:~:text=Esta%20parte%20de%20la%20Norma%20ISO%2014644%20establece,tiempo%2C%20dentro%20de%20la%20especificaci%C3%B3n%20para%20la%20clasificaci%C3%B3n.

Anuncio publicitario

Intrones y Exones en la síntesis de proteínas

20 sábado Ago 2022

Posted by José Félix Rodríguez Antón in Bioquímica, CIENCIA, Genética

≈ Deja un comentario

Etiquetas

ADN, ARNm, exón, intrón, síntesis de proteínas

Los genes del genoma consisten en intrones y exones. En 1977 e independientemente el uno del otro, Richard Roberts y Phillip Sharp demostraron cómo el ARN se puede dividir en intrones y exones, después de lo cual los exones se pueden unir.
El dogma central de la genética: el ADN se transcribe en ARN para su traducción en proteínas.

La transcripción de un gen a ADN, genera un ARN mensajero inmaduro.
1º Este ARN mensajero tiene que ajustarse: se eliminan los intrones y las regiones no traducidas, los intrones no codifican ninguna proteína y se eliminan del ARNm.
2º Una vez que el ARN mensajero ha madurado, se traduce a una proteína.

Los intrones son trozos muy grandes de ARN dentro de una molécula de ARN mensajero que interfieren con el código de los exones. Estos intrones se eliminan de la molécula de ARN (para dejar una serie de exones unidos entre sí) de manera que se puedan codificar los aminoácidos correctos, juegan un papel importante para que éstas se fabriquen de forma correcta.

Un exón es una región del genoma que finaliza con una molécula de ARNm. Algunos exones son codificantes, es decir que contienen información para producir una proteína, mientras que otros no son codificantes.

Los factores que intervienen en la reacción de corte de intrones y empalme de exones del ARN intervienen en la producción de ARNm parcialmente distintos: algunos exones pueden ser eliminados junto con los intrones que los flanquean, se crean diferentes versiones de ARN mensajeros que son traducidas a su vez en diferentes proteínas también funcionales

Bibliografía:

NIH: «Exón»
https://www.genome.gov/es/genetics-glossary/Exon

Bach, Moserrat, «Corte de intrones y empalme de exones», Rev. Investigación y Ciencia, nº 188, Mayo 1992
https://www.investigacionyciencia.es/revistas/investigacion-y-ciencia/pinzamiento-de-membrana-59/corte-de-intrones-y-empalme-de-exones-5206,

Universidad Autónoma de Barcelona. «SPLICING-EXONES E INTRONES2019_4_29P13_10_53.pdf», Bioinformática
http://bioinformatica.uab.cat/base/documents/genetica_gen/portfolio/SPLICING-EXONES%20E%20INTRONES2019_4_29P13_10_53.pdf

Chow, L.T., Roberts, J.M., Lewis, J.B., Broker, T.R. «A map of cytoplasmic RNA transcripts from lytic adenovirus type 2, determined by electron microscopy of RNA:DNA hybrids». Cell, 11(4): 819-36. 1977.
https://pubmed.ncbi.nlm.nih.gov/890740/

Berk, A.J., Sharp, P.A. «Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids». Cell, 12(3): 721-32. 1977.
https://pubmed.ncbi.nlm.nih.gov/922889/

Berget, S.M., Sharp, P.A. «A spliced sequence at the 5′-terminus of adenovirus late mRNA». Brookhaven Symp Biol, 29:332-44, 1977.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC431482/

Tijeras moleculares: CRISPR

18 lunes Dic 2017

Posted by José Félix Rodríguez Antón in cáncer, CIENCIA, Genética

≈ Deja un comentario

Etiquetas

ADN, Carpentier, Doudna, genética médica, Mojica

adn

La tecnología CRISPR (clustered regularly interspaced short palindormic repeats) es una reciente herramienta de edición del genoma que actúa como unas tijeras moleculares capaces de cortar cualquier secuencia de ADN del genoma de forma específica y permitir la inserción de cambios en la misma.

 
Para manipular secuencias del genoma de organismos vivos destacan actualmente:
• las nucleasas de dedos de zinc (ZFN): proteínas sintéticas cuyas regiones de unión a ADN les permiten cortar el ADN en puntos específicos.
• las nucleasas sintéticas tipo activadoras de transcripción (TALEN)
• las nucleasas de secuencias palindrómicas inversas (CRISPR-Cas): son más eficientes y pueden llegar a más genes que ambas técnicas.

 
El sistema CRISPR-Cas es un mecanismo de defensa procariótico empleado por algunas bacterias para eliminar virus o plásmidos invasivos, estas regiones eran un sistema inmune para microorganismos. El sistema consta de un componente proteico Cas9 con actividad nucleasa, que corta el ADN, un ARN, conocido como ARN guía, que dirige al anterior dominio catalítico hacia la secuencia de ADN que se quiere editar. Cas9 es una nucleasa, una enzima especializada en cortar ADN, con dos sitios de corte activos (HNH y RuvC), uno para cada cadena de doble hélice.

 

CRISPR~3

 
Su funcionamiento es sencillo:
a) el sistema se programa para que vaya a un lugar determinado del genoma de un ser vivo, donde se produce un corte
b) la célula del organismo lo repara, momento en el que se edita
así un sistema bacteriano puede ser transferido a células humanas in vivo y sigue funcionando.
Al administrar la proteína Cas9 y los ARN guía apropiado a una célula, el genoma de esta puede cortarse en los lugares deseados, cuyas secuencias serán complementarias a las de los ARN guía utilizado. Esto permite la eliminación funcional de genes o la introducción de mutaciones (tras la reparación del corte utilizado por la maquinaria celular de reparación del ADN) para estudiar sus efectos.

 
En el 2005, tres grupos de investigación independientes mostraron que algunos de los espaciadores de los CRISPRs se derivan de diversas fuentes de ADN como ADN de fagos y ADN extracromosomal como los plásmidos. Fue el grupo de Francisco J. Mojica de la Universidad de Alicante quién primero se dio cuenta que las secuencias CRISPR y los espaciadores asociados podían formar parte de algún sistema inmune propio de estos microorganismos procarióticos. El microbiólogo se dio cuenta que tenía algo importante delante, pero no consiguió financiación del Gobierno.
Jennifer Doudna y Emmanuell Charpentier habían estado explorando de manera independiente a las proteínas asociadas a CRISPR para aprender cómo las bacterias utilizan a los espaciadores en sus sistemas inmunes. Juntas, estudiaron un sistema CRISPR más simple que se basa en una proteína llamada Cas9. Habían identificado los elementos mínimos de los sistemas descubiertos por Mojica con los que se podría cortar el ADN y abrían en 2012 la puerta a la edición de genomas.
En 2015 Jennifer Doudna y Emmanuell Charpentier recibían el premio “Princesa de Asturias de Investigación”.

 
La curación es una de las aplicaciones de la técnica genética, también la creación de armas biológicas y de niños a la carta. Las secuencias CRISPR, podrían curar el cáncer y crear una industria millonaria. El sistema ha sido modificado para hacer factores de transcripción programables que permiten a los científicos silenciar o activar ciertos genes. Puede revertir síntomas de enfermedad en organismos vivos fue demostrado en marzo de 2014, cuando investigadores del MIT curaron a ratones de desórdenes genéticos del hígado.
Actualmente hay una guerra de patentes entre las investigadoras ganadoras del premio Princesa de Asturias y el investigador del MIT propietario de la mayor parte de la patente.

 

Bibliografía:

• Mojica, Francisco J.M; Almendros, Cristobal; “Los orígenes de CRISPR”, Investigación y Ciencia; Octubre 2017, nº 493

 

• Magnus Lundgren; “CRISPR: methods and Protocols”, Ed. Human Press; 2015

 

• Wikipedia

 

 

Links relacionados:

• La revolución del ADN “National geographic”
http://www.nationalgeographic.com.es/ciencia/grandes-reportajes/revolucion-del-adn_10762/1

 

Secuenciación del Genoma Humano

12 domingo Nov 2017

Posted by José Félix Rodríguez Antón in cáncer, CIENCIA, Genética

≈ Deja un comentario

Etiquetas

ADN, biopsia líquida, next-generation sequencing, NGS, Secuenciaciones de nueva generación

genetica

La secuenciación del genoma humano determina la secuencia completa de ADN en el genoma de un organismo (el orden de las bases A, C, G y T en un fragmento de ADN): Secuencia de los cromosomas de un organismo con ADN, el contenido en el de mitocondrias y en las plantas en cloroplastos.

 
La secuenciación de genes permite a los científicos identificar variantes funcionales de los estudios de asociación y mejorar el conocimiento a disposición de los investigadores interesados en la biología evolutiva, y sentar las bases para predecir susceptibilidad a la enfermedad y la respuesta a los fármacos.

 
Una de las mayores sorpresas surgidas con la secuenciación del genoma humano es el pequeño número de genes que codifican proteínas, antes se suponía que nuestro genoma incluía 100.000 genes codificadores de proteínas, el número verdadero oscila entre 20.000 y 25.000.
Al alinear los genomas secuenciados, se pueden obtener las mutaciones somáticas producidas, como las sustituciones de bases.

 

Secuenciación del ADN

Secuenciación del ADN - copia
Reacción en cadena de la polimerasa (PCR)
Marcado de las moléculas a secuenciar por radiactividad o fluorescencia
Métodos clásicos de secuenciación:
Químico de Maxam y Gilbert
Enzimático de Sanger
Separación de las cadenas de ADN marcadas por electroforesis en geles desnaturalizantes
Segmentación automática empleando el método enzimático:
Segmentación con cebadores fluorescentes
Secuenciación con terminadores fluorescentes

 

 

Secuenciación de alto rendimiento o “next-generation”

 

 

Se pasa de hacer secuenciación a trozos, a lectura de los genomas de manera completa. Las tecnologías de secuenciación de alto rendimiento son capaces de paralelizar muchas operaciones de secuenciación, produciendo miles o millones a la vez, reduciendo los costos , el coste de cada nucleótido pasó de 10 $ en 1990 a 0.01 $ en 2005.
Son las llamadas también secuenciaciones de nueva generación o “next-generation sequencing” (NGS).

GNS 2

 
Financiado por instituciones públicas y privadas, así como desarrolladas y comercializadas dentro de la empresa privada por las compañías de biotecnología.
Este tipo de secuenciación a gran escala ha permitido llevar a cabo una lectura eficiente del genoma humano llegando a encontrar incluso regiones no definidas en el genoma de referencia.

 
Ha producido la identificación de SNPs ( análisis de polimorfismos de una sola base) aún no descritos contribuyendo a un aumento de la tasa de descubrimiento de variantes mediante el estudio de base de un gran número de genomas de diversas poblaciones humanas. De utilidad en la identificación de nuevas variantes, aquellas con relevancia clínica.

 
Las direcciones futuras para la evolución de NGS incluye su uso para analizar lo llamado “biopsia líquida”, analizando las células tumorales circulantes (CTC) por la sangre, que son células que se desprenden del tumor y viajan a otras partes del cuerpo, su uso es útil tanto en el tratamiento de la enfermedad como en el seguimiento de la evolución, en particular en cánceres de pulmón. No solo se conocerá el estado del tumor en tiempo real sino que, dada su simplicidad, se podrá repetir cuantas veces se quiera para conocer con precisión, la evolución del mismo. Permite determinar el tratamiento adecuado para cada paciente, evitando administrar fármacos o tratamientos que pueden causar efectos molestos secundarios o que no sean realmente efectivos.

GNS 1

 
Hitos en la secuenciación del ADN

 
1953; Descrubrimiento de la estructura de la doble hélice de ADN por Watson y Crick.
1972; Tecnología del ADN recombinante, permite el aislamiento de fragmentos definidos de ADN.
1975; Primer genoma secuenciado del bacteriófago X174 por Fred Sanger publicado en Nature, la técnica para leer el ADN consistía en copiar el proceso natural de replicación del ADN.
1977; Se desarrollan métodos de secuenciación:
Allan Maxam y Walter Gilbert, publican “ Secuenciación del ADN mediante degradación químicas”.
Fred Sanger, publica “Secuenciación del ADN mediante síntesis enzimática”.
1980; Fred Sanger y Wally Gilbert reciben el Premio Nobel de química.
1985; Kary Mullis da a conocer la técnica PCR (reacción en cadena e polimerasa) que permite copiar genes específicos con gran rapidez, replicando pequeños fragmentos de ADN.
1986; El laboratorio de Leroy E. Hood en el Instituto de Tecnología de California y Smith anuncian la primera máquina semiautomática de secuenciación de ADN.
1993; Kary Mullis recibe el Premio Nobel de Química.

 

 

Bibliografía:

 
Seán O Hynes, Brendan Pang, Jackeline A James, Perry Maxwell & Manuel Salto-Tellez; “Tissue-based next generation sequencing: application in a universal healthcare system”, British Journal of Cancer 2017

 

Friedman AA, Letai, Fisher DE, Flaherty KT; “Precisión medicine for cáncer with next-generation diagnostics. Nat Rev Cancer 2015

 

Souilmi Y, Lancaster AK, Jung JY, Rizzo E, Hawkins JB, Powles R, Amzazi S, Ghazal H, Tonellato PJ, Wall DP; “Scalable and cost-efective NGS genotyping in the cloud. BMC Med Genomics, 2015

 

Jeremy Mark/ Lubert Stryer/ John L Tymoczko;“Bioquímica”Ed. Reverte, 6ª edición, 2007

 

 

Links relacionados:

 

 

Parque científico de Madrid, Servicios de Genómica

https://fpcm.es/servicios-cientificos/

 

 

Universidad de Córdoba, Servicio de apoyo a la investigación
https://www.uco.es/servicios/scai/genomica.html

 

 

Universidad de Navarra, Medicina onco-hematología
http://www.unav.edu/web/vida-universitaria/detalle-opinion2?articleId=13210930

 

 

Francisco Martínez-Abarca: Métodos de secuenciación masiva

 

 

 

 

 

 

 

Grafeno y aplicaciones en medicina

02 sábado Sep 2017

Posted by José Félix Rodríguez Antón in CIENCIA, SANIDAD

≈ 1 comentario

Etiquetas

ADN, Andrey Gueim, anticancerígeno, biomarcador, implante, inmunología, Konstantin Novosiolov, Philipp Russell, prótesis, sensor

IMG_2094

Enfermedades como la parálisis, personas ciegas y el control celular serán reversibles; abriendo un nuevo campo en el diagnóstico y control de las enfermedades; con esta malla atómica de átomos de carbono.
El enlace químico y su estructura se describieron durante el decenio de 1930. Philip Russell Wallace calculó por primera vez en 1949 la estructura electrónica de bandas.
Se pensaba que las fluctuaciones térmicas destruirían el orden del cristal dando lugar a que se fundiese. Fue una revolución que Gueim y Novosiólov consiguiesen aislar el grafeno a temperatura ambiente. La palabra grafeno se adoptó en 1994 (grafito con enlaces dobles). Recibieron el Premio Nobel de Física en 2010 por sus descubrimientos acerca de este material.
Es una sustancia compuesta por carbono puro, con átomos dispuestos en un patrón regular hexagonal, similar al grafito. Una lámina de un átomo de espesor unas 200 veces más resistente que el acero, su densidad más o menos la misma que la fibra de carbono y unas 5 veces más ligero que el aluminio. Es un alótropo del carbono, un teselado hexagonal plano formado por átomos de carbono y enlaces covalentes que se generan a partir de la superposición de los híbridos sp2 de los carbonos enlazados.

 

IMG_2097

Propiedades destacadas:
Extremadamente duro: 100 veces más resistente que una lámina de acero de igual espesor.
Flexible y elástico.
Transparente.
Autoenfriamiento.
Conductividad térmica y eléctrica alta.
Reacciona químicamente con otras sustancias produciendo compuestos de diferentes propiedades.
Soporte de radiación ionizante.
Ligero como la fibra de carbono pero más flexible.
Menor efecto Joule: se calienta menos al conducir electrones.
Genera electricidad al ser alcanzado por la luz.

 

Aplicaciones en medicina:
a) Agente anticancerígeno (Universidad de Mánchester): se dirige directamente a las células cancerosas, método basado en inyectar al paciente partículas de grafeno, modificadas químicamente para que se adhieran a las células cancerosas. Como este material absorbe la luz infrarroja, las irradiaciones de los tratamientos radiológicos con las que se trata el tumor actuarían directamente sobre las células dañadas, sin afectar al resto del cuerpo, causando menos efectos secundarios en el paciente.

 
b) Biomarcador (Universidad de Michigan): actúa como sensor de la presión arterial, niveles de azúcar en sangre y del óxido nítrico en el oxígeno.

(Universidad de Princenton): sensor en un tatuaje dental con péptidos cuidadosamente construidos, que detecta las bacterias de forma individual, determinando la clase de patología que nos enferma.

(Universidad de Jinan, China): un inmunosensor que permite detectar cantidades infinitesimales de algunas sustancias como la hormona de crecimiento.

c) Implantes (Universidad Técnica de Munich): gracias a la biocompatibilidad y a que convierte la luz en impulsos eléctricos que se transmiten al cerebro a través del nervio óptico, transformando la señal en imágenes.

Implantes neuronales, que sustituyen a los tejidos orgánicos dañados, al funcionar las células nerviosas básicamente por medio de una corriente eléctrica. Pudiendo ser un reemplazo para circuitos nerviosos lesionados.

 

d) Prótesis: grafeno sobre caucho, lo hace un material idóneo para un musculo biónico eficiente, dado que la estimulación eléctrica sobre este compuesto hace posible controlar la tensión y la relajación.

Elemento para confeccionar férulas, en los que hoy se usa aluminio, acero o titanio, para conseguir la dureza y resistencias necesarias.

e) Desalinización (Universidad del MIT): laminas de grafeno con un átomo de grosor son más eficientes y baratas. Purificando el agua de manera eficiente.

f) Secuenciación ADN: mejorando el estudio de las enfermedades de origen genético, este material convertido en membrana, puede sumergirse en el fluido conductor y aplicar voltaje de energía para extraer el ADN a través de los poros minúsculos en el grafeno,

 

Bibliografía:

Grafeno.com
GrafenoSinFronteras
Wikipedia
Yang D & cols. “In vivo targeting of metastatic breast cáncer via tumor vasculature-specific nano-graphene oxide”, Biomaterials, 2016

 
Links relacionados:
Universidad de Granada

 

Universidad Miguel Hernández. Elche

Premio Nobel de Química 2015

10 sábado Oct 2015

Posted by José Félix Rodríguez Antón in Premios ciencia

≈ Deja un comentario

Etiquetas

ADN, Aziz Sancar, Paul Modrich, reparación ADN, Tomas Lindahl

Premio nobel quimica

Los científicos solían creer que las moléculas de ADN eran estables, al transmitir la información genética de generación en generación. Pero todas las formas de cáncer comienzan con daño en el ADN.

  1. El ADN sufre daños por radiación ultravioleta, radicales libres y sustancias cancerígenas.
  2. El genoma celular sufre cambios espontáneos, en la división celular, que ocurre varios millones de veces cada día en nuestro cuerpo.

 

El Nobel de química este año ha sido concedido a tres científicos que han determinado como funcionan los sistemas de reparación del ADN.

 

  • Tomas Lindahl (Estocolmo, 1938), trabaja en el Instituto Francis Crick del Reino Unido. Ha demostrado que la molécula de ADN se desintegra, descubriendo la maquinaria molecular, la reparación por escisión de bases, que evita el colapso del ADN.

 

  • Aziz Sancar investigador en la Universidad de Carolina del Norte. Ha descrito la reparación por escisión de nucleótidos, mecanismo que usan las células para reparar el daño del ADN por rayos UV.

 

  • Paul Modrich (1946), investigador de la Universidad de Duke (EE.UU). Ha demostrado como la célula corrige los errores que sufre el ADN cuando se divide la célula, reparación de apareamientos erróneos, reduce mil veces la frecuencia de errores.

 

Mecanismos que han desarrollado las células para reparar el ADN dañado:

  1. Inversión directa del ADN dañado

La mayoría de los daños son reparados mediante la eliminación de bases dañadas y la síntesis de la región escindida. Se pueden reparar mediante inversión directa del daño. Los dímeros de pirimidina que resultan de la exposición a la luz ultravioleta (UV) y los residuos de guanina alquilada que se han modificado por la adición de grupos metilos y etilos en la posición O6 del anillo de purina. Otra forma de reparación directa corresponde al daño producido por la reacción entre agentes alquilantes y el ADN. Se elimina la modificación química mutagénica potencial, y se restaura la guanina original. Las enzimas que catalizan esta reacción directa de reparación se encuentran en abundancia en procariotas y eucariotas, incluidos los humanos.

 

  1. Reparación por escisión

La reparación por escisión comprende la reparación de gran cantidad de alteraciones químicas del ADN. Son los mecanismos importantes de reparación del ADN en las células procariotas y eucariotas. El ADN dañado es reconocido y eliminado, como bases independientes o como nucleótidos. El espacio vacío generado se rellena con la síntesis de una nueva hebra de ADN, utilizando la hebra complementaria no dañada como molde. Los tres tipos de reparación por escisión- reparación por escisión de base, reparación por escisión de nucleótido y reparación por desapareamiento- resuelven en la célula el ADN dañado.

 

  1. Reparación propensa al error

Las células poseen ADN polimerasas especializadas para replicar a través de un punto de ADN dañado. La replicación del ADN dañado por estas polimerasas especializadas puede llevar a la incorporación de bases incorrectas, de modo que esta forma de hacer frente al ADN dañado se denomina reparación propensa al error.

 

  1. Reparación recombinatoria

Se basa en sustitución del ADN dañado mediante la recombinación de una molécula sana. Este mecanismo es utilizado para reparar lesiones encontradas durante la replicación del ADN, donde la presencia de dímeros de timina u otras lesiones que no pueden ser copiadas por las ADN polimerasas replicativas normales bloquean el avance de la horquilla de replicación. La replicación recombinatoria proporciona un mecanismo principal para la reparación de las roturas de doble hebra, que pueden ser introducidas en el ADN por la radiación ionizante (rayos X) y algunos agentes químicos.

 

Links relacionados:

 

https://www.youtube.com/watch?v=pGJa97rAZWo

  • Reparación por escisión de nucleótidos

https://www.youtube.com/watch?v=9DRnoi8gfMU

  • Reparación radiaciones solares

https://www.youtube.com/watch?v=ke3WFStNjPY

Estadísticas del sitio

  • 265.534 hits

Introduce tu correo electrónico para suscribirte a este blog y recibir avisos de nuevas entradas.

Únete a otros 220 suscriptores

Entradas recientes

  • La «rotación» del núcleo interno de la Tierra se ha detenido recientemente
  • ChatGPT: Optimizing Language Models for Dialogue
  • Viajes transoceánicos antes de los Europeos
  • Descubriendo el mundo en el siglo XV
  • Datos visitas del blog año 2022:
febrero 2023
S D L M X J V
 123
45678910
11121314151617
18192021222324
25262728  
« Ene    

Categorías

Estadísticas del sitio

  • 265.534 hits

Entradas recientes

  • La «rotación» del núcleo interno de la Tierra se ha detenido recientemente
  • ChatGPT: Optimizing Language Models for Dialogue
  • Viajes transoceánicos antes de los Europeos
  • Descubriendo el mundo en el siglo XV
  • Datos visitas del blog año 2022:

Enter your email address to follow this blog and receive notifications of new posts by email.

febrero 2023
S D L M X J V
 123
45678910
11121314151617
18192021222324
25262728  
« Ene    

Páginas

  • Perfil

Categorías

Blogroll

  • WordPress.com
  • WordPress.org

Meta

  • Registro
  • Acceder
  • Feed de entradas
  • Feed de comentarios
  • WordPress.com

Crea un blog o un sitio web gratuitos con WordPress.com.

Privacidad y cookies: este sitio utiliza cookies. Al continuar utilizando esta web, aceptas su uso.
Para obtener más información, incluido cómo controlar las cookies, consulta aquí: Política de cookies
  • Seguir Siguiendo
    • Blog de José Félix Rodríguez Antón
    • Únete a 193 seguidores más
    • ¿Ya tienes una cuenta de WordPress.com? Accede ahora.
    • Blog de José Félix Rodríguez Antón
    • Personalizar
    • Seguir Siguiendo
    • Regístrate
    • Acceder
    • Denunciar este contenido
    • Ver sitio web en el Lector
    • Gestionar las suscripciones
    • Contraer esta barra
 

Cargando comentarios...